

آموزش طراحى پی های عمیق در نرم افزار

SAP2000 CSI BRIDGE

آموزش مدلسازی ، تحلیل طراحی

پی های عمیق در نرم افزار sap2000,CSI BRIDGE

در طراحی شمعها طرح ژئوتکنیکی مقدم برطرح سازهای میباشد بعبارت دیگر ابتدا طول مورد نیاز شمع با توجه به ظرفیت نوک و جداره شمع بدست آمده سپس براساس آن طرح سازهای (شامل آرماتورهای طولی وعرضی) صورت می گیرد.

مدلسازی خاک

در مدلسازی نرم افزاری میبایست خاک اطراف شمع ها مدلسازی گردد که این عمل بوسیله فنرها با سختی مشخص صورت می گیرد در شمع ها این فنرها به چند دسته تقسیم بندی می گردد.

- د. فنرهای جانبی(سختی جانبی) یا خاک اطراف شمع
 - ۲. فنرهای قائم یا اصطکاکی
 - ۳. فنر اتکایی یا نوک شمع

شکل ۱۲:جانمایی فنرهای خاک

الف) روش NAVFAC

در این روش سختی فنرها از رابطه زیر بدست میآید:

 $K_S = f \frac{Z}{D} (kN/m^r)$

civil.i

K_s: سختی جانبی فنر معادل خاک

f: عامل عمق برحسب تراکم و مقاومت نهایی خاک براساس جدول زیر بدست می آید

Q u(مقاومت (نهایی خاک	Dr تراکم نسبی	f KN/m3
20		200
40		350
60	-	550
80		800
110	40	1400
150	50	2000
190	60	2800
230	70	3400
270	80	4200
310	90	4900

ضریب فشار خاک مکانیکی براساس جدول در صورتیکه جنس لایه متغیر باشد باید ضریب f جداگانه تعریف شود

Z: عمق مورد نظر از سطح زمين برحسب متر

D: قطر شمع برحسب متر

آموزش مدلسازی ، تحلیل طراحی پی های عمیق در نرم افزار sap2000,CSI BRIDGE Ø:قطر میلگرد عرضی فاصله میلگردها یا اسپیرال ها:S . D_c:قطر مغزہ بتن (بتن محصور شدہ) در خارج از ناحیه مفصل پلاستیک مقدار آرماتور عرضی برابر است با: $V_n = \frac{V_u}{n = \cdot \cdot \cdot \cdot}$ $V_c = \cdot . \Delta \nabla \sqrt{f_c'} b d$ $V_s = V_u - V_c$ $\frac{A_{v}}{S} = \frac{V_{s}}{f_{v}d}$ $rac{kg}{cm^7}$ مقاومت فشاری مشخصه بتن بر حسب: f'_c $rac{kg}{cm^{ ext{ iny t}}}$ حداقل تنش تسلیم میلگردهای برشی بر حسب $f_{\mathcal{Y}}$ cm^r سطح مقطع فولاد برشی بر حسب A_v cm عمق موثر بر حسب: d S :فاصله آرماتورهای عرضی بر حسب CM

آموزش مدلسازی ، تحلیل طراحی

پی های عمیق در نرم افزار sap2000,CSI BRIDGE

همانطور که مشاهده می گردد خطوط شبکه ترسیم گردید حال این خطوط میبایست ویرایش شوند برای این منظور با راست کلیک کردن برروی صفحه نمایش برنامه با انتخاب گزینه Edit Grid Data مشخصات خطوط شبکه ترسیم شده را ویرایش می کنیم

شکل ۳۰:نحوه ویرایش خطوط شبکه

در پنجره باز شده در قسمت Display Gride as گزینه Spacing را انتخاب می کنیم وسپس خطوط شبکه را مطابق تصویر زیر ویرایش می کنیم

Edit Forma	at						
					Units		Grid Lines
System	Name	Gi	LOBAL		Ton	f, m, C 💌	Quick S
-× Grid De	ita.						
	Grid ID	Spacing	Line Type	Visibility	Bubble Loc.	Bubble Loc 🔺	AB
1	A	2	Primary	Show	End		
2	В	6	Primary	Show	End		
3	С	2	Primary	Show	End		3
4	D	0	Primary	Show	End		
5							2)
6							
7							
8						-	
-Y Grid Da	ita.						Display Grids as
	Grid ID	Spacing	Line Type	Visibility	Bubble Loc	Bubble Loc 🔺	C Ordinator (
1	1	2	Primary	Show	Start		(Ordinales (
2	2	4	Primary	Show	Start		
3	3	2	Primary	Show	Start		Hide All Gri
4	4	0	Primary	Show	Start		
5							Glue to Grid
6							
7							Bubble
8						- 1	
9						•	
2 Grid De							Reset to De
	Grid ID	Spacing	Line Type	Visibility	Bubble Loc.		
1	Z1	10	Primary	Show	End		
2	Z2	0	Primary	Show	End		Heorder U
3							
4							
5							
5							

شکل ۳۱:ویرایش مشخصات خطوط شبکه

آموزش مدلسازی ،تحلیل طراحی

پی های عمیق در نرم افزار sap2000,CSI BRIDGE

در قسمت Properties با زدن دکمه Modify/Show For All مشخصات آنها را ویرایش میکنیم درپنجره باز شده در قسمت Stiffness Value Used For All Load Case در قسمت های,U3,U2 سختی خاک اطراف را معرفی میکنیم ودر قسمت U1سختی اصطکاکی جداره را لحاظ می کنیم

آموزش مدلسازی ، تحلیل طراحی

شکل ۷۲:نیروهای اعمال شده به سرشمع

اختصاص بارخاك

پس از اعمال بارهای ناشی عکس العمل نیروهای ستون بر روی سرشمع در این قسمت وزن خاک روی سرشمع را اعمال می کنیم با فرض ارتفاع یک متر خاک با وزن مخصوص ۲ تن بر مترمکعب به صورت گسترده برروی سرشمع این وزن را اعمال خواهیم کرد برای این منظور کل المان دال سرشمع را انتخاب کرده وسپس از منوی Assign>Area loads>Uniform مقدار بار خاک را به صورت گسترده برروی سرشمع اختصاص می-

دهيم.

Area Uniform Loads	
Load Pattern Name + DEAD Uniform Load Load 2 Coord System GLOBAL Direction Gravity OK	Units Units Options Add to Existing Loads Replace Existing Loads Delete Existing Loads Cancel

شکل ۷۳: اختصاص بار گسترده خاک برروی دال سرشمع

طرح سازه ای شمع

همانطور که بررسی گردید طول شمع انتخابی از لحاظ ژئوتکنیکی جوابگوی نیروها ایجاد شده بوده و برای طرح سازه ای شمع ها براساس بیشترین نیروها طرح شده وبه الباقی شمع ها در گروه شمع مشخصات تعمیم داده میشود لذا کلیه شمع ها در گروه شمع می بایست از لحاظ میزان آرماتور ارتفاع با یکدیگر برابر باشند

نیروهای داخلی تحت ترکیب بارD+EQ(L)+0.3EQ(T) :

Case D+EQ(L)+0.3EQ(T) Items Axial (P and T)		et (Location) - Display Options
Equivalent Loads - Free Body Diagr	am (Concentrated Forces in Tonf, Conc	centrated Torsions in Tonf-m)
257.99		255,16 2.827 Tonf/m
*		at 0.50000 m
Resultant Axial Force		Axial
		-257.9907 Toni at 0.00000 m
Resultant Torsion		
		Torsion 5 346E-16 Tonf-m
		at 1.00000 m

شکل ۸۵:نیروی محوری تحت ترکیب بار (D+EQ(L)+0.3EQ(T)

Case D+E0(L+0.3E0(T) Image: Case End Length Offset (Locality and Mage) Outcome (Mage) Outcome (Mage)	n) Display Options C Scroll for Values C Show Max
- Equivalent Loads - Free Body Diagram (Concentrated Forces in Tort), Concentrated 28-24 47-22 47-24 47-25	Moments in Tonf-m) Dist Load (2-dir) 0.000 Tonf/m at 1.00000 m Positive in -2 direction
Resultant Shea	Shear V2 -47.8201 Tonf at 1.00000 m
Resultant Moment	Moment M3 76.16181 Tonf-m at 1.00000 m
Deflections	Deflection (2-dir) 0.000025 m at 0.50000 m Positive in -2 direction
C Absolute C Relative to Beam Minimum C Relative to Beam Ends	Positive in -2 direction

شکل ۸۶: نیروی برشی و لنگر خمشی V2,M3 تحت ترکیب بار (D+EQ(L)+0.3EQ(T)

آموزش مدلسازی ، تحلیل طراحی

پی های عمیق در نرم افزار sap2000,CSI BRIDGE

$$V_{u} = r \Delta . f t$$

$$V_{n} = \frac{V_{u}}{n} = \frac{r \Delta . f}{\cdot . \wedge \Delta} = r \cdot . \wedge \wedge t$$

$$V_{c} = \cdot . \Delta r * \sqrt{f_{c}} * b * d$$

$$V_{c} = \cdot . \Delta r * \sqrt{r \cdots} * \gamma r \cdots * \gamma r = \gamma r r r f t > V_{n} = r \cdot . \wedge \wedge t$$

$$V_{s} = \cdot$$

بنابراین در خارج از محدوده مفصل پلاستیک از حداقل آیین نامه ای جهت آرماتور برشی استفاده می کنیم

مطابق بند۸٫۱۹٫۱٫۲مقدار فولاد حداقل برشی برابر است با :

8.19.1.2 Where shear reinforcement is required by Article 8.19.1.1, or by analysis, the area provided shall not be less than:

A.

$$r = \frac{50b_{w}s}{f_{v}}$$
(8-64)

where b_w and s are in inches.

8.19.1.3 Minimum shear reinforcement requirements may be waived if it is shown by test that the required ultimate flexural and shear capacity can be developed when shear reinforcement is omitted.

8.19.2 Types of Shear Reinforcement

8.19.2.1 Shear reinforcement may consist of:

(a) Stirrups perpendicular to the axis of the member or making an angle of 45° or more with the longitudinal tension reinforcement.

(b) Welded wire fabric with wires located perpendicular to the axis of the member.

(c) Longitudinal reinforcement with a bent portion making an angle of 30° or more with the longitudinal tension reinforcement.

(d) Combinations of stirrups and bent longitudinal reinforcement.

(e) Spirals.

$$A_{v\,min} = \frac{\mathfrak{r}.\mathfrak{d} \ b_{tf}S}{f_y}$$

TABLE 8.32.3.2	Tension Lap Splices										
	Maxir Splice	num Percen d within Re Lap Length	t of A _s equired								
(A _s provided)/(A _s required) ^a	50	75	100								
Equal to or Greater than 2 Less than 2	Class A Class B	Class A Class C	Class B Class C								

شکل ۱۱۱:جدول ۸٬۳۲٬۳٫۲ آیین نامه آشتو استاندارد

8.32.3.1 The minimum length of lap for tension lap splices shall be as required for Class A, B, or C splice, but not less than 12 inches.

Class A splice		•				•			•								•		•		•	.1.0	ℓ_d
Class B splice						•	•	•			•	•		•		•						.1.3	ℓ_{d}
Class C splice		•	•			•	•	•	•	•			•	•	•		•	•	•	•		.1.7	ℓ_{d}

شکل ۱۱۲:بند ۸٫۳۲٫۳٫۱ آیین نامه آشتو

در جدول فوق وصله صددرصد به معنی این است که کلیه میلگردها در یک مقطع وصله شوند و ۵۰درصد به صورت یکی در میان وصله صورت گیرد ،Ld موجود در تصویر فوق میبایست با اعمال ضرایب تعدیل لحاظ شود.